鋰電池過充過放的本質:充電時,鋰離子從正極板脫嵌,通過電解液嵌入到負極板上;放電時,鋰離子從負極板上脫嵌,并經由電解液嵌入到正極板上;鋰離子電池的充放電過程是鋰離子在極板上的嵌入和脫嵌過程。充電時,隨著鋰離子的脫嵌,正極材料體積會發(fā)生一定量的收縮;放電時,隨著鋰離子的嵌入,正極材料體積會發(fā)生一定量的膨脹。過充時,正極晶格會產生崩塌,鋰離子在負極會形成鋰枝晶從而刺破隔膜,造成電池的損壞。過放時,正極材料活性變差,阻止鋰離子的嵌入,電池容量急劇下降。如果發(fā)生正極材料體積過度膨脹,會破壞電池的物理結構,從而導致電池的損壞。BMS電池保護板可按照電芯材料來區(qū)分。電動兩輪車BMS效果
在組成結構上,BMS 分為硬件與軟件兩大部分。硬件包含主控單元,通常由微控制器(MCU)或數字信號處理器(DSP)擔當,負責數據處理與指令發(fā)出;電壓、電流、溫度采集電路,分別用于采集對應參數;保護電路在異常時切斷電路;均衡電路實現電池電量平衡;通信接口電路支持多種通信協議,保障數據傳輸。軟件涵蓋底層驅動軟件,負責硬件交互;電池管理算法,如 SOC 估算、SOH 評估、均衡及充放電控制算法等,是 BMS 重點;通信協議棧保障通信順暢;用戶界面軟件則為用戶提供直觀操作界面。電動兩輪車BMS效果BMS的發(fā)展趨勢是向智能化、網絡化、集成化方向發(fā)展,提高電池組的性能、安全性和可靠性。
在儲能系統中,儲能電池只與高壓儲能變流器交互,變流器從交流電網取電,給電池組充電,或者電池組給變流器供電,電能通過變流器轉換到交流電網。儲能系統的通信、電池管理系統主要與變流器和儲能電站調度系統有信息交互關系。另一方面,電池管理系統向變流器發(fā)送重要狀態(tài)信息,確定高壓電力交互狀況,另一方面,電池管理系統向儲能電站的調度系統PCS發(fā)送較詳盡的監(jiān)視信息。電動汽車BMS在高壓下與電動機和充電機有能量交換關系的通信方面,與充電機在充電過程中有信息交互,在所有應用過程中與整車控制器有較詳細的信息交互。
BMS分為純硬件BMS保護板和軟件結合硬件的BMS保護板。純硬件的BMS保護板是一組比較固定的保護參數,根據自身采集到的電壓、電流、溫度等狀態(tài)保護與恢復,不需要MCU參與,這樣的保護板也就不具備通訊信息交互的功能。而軟件+硬件的方式,MCU可以對信息的實時采集與外部交互,上傳BMS保護板實時信息。一般為了更好地分析電池過去的狀態(tài),尤其是在故障分析和算法建模的時候,需要大量的數據支撐,這時候就需要log存儲功能,盡可能多的記錄BMS的數據。BMS的安全保護功能包括過充保護、過放保護、短路保護、溫度保護等,確保電池組的安全運行。
電池保護板的自身參數,比如自耗電分為工作自耗電和靜態(tài)(睡眠)自耗電,保護板自耗電的電流一般是ua級別。工作自耗電電流較大,主要為保護芯片、mos驅動等消耗。保護板的自耗電太大會過多消耗電池電量,如果長時間擱置的電池,保護板自耗電可能導致電池虧電。自耗電和內阻等,他們不起保護作用,但是對電池的性能是有影響的。保護板的主回路內阻也是一個很重要的參數,保護板的主回路內阻主要來源于pcb板上鋪設阻值,mos的阻值(主要)和分流電阻的阻值。在保護板進行充放電時,特別是mos部分,會產生大量的熱,因此一般保護板的mos上都需要貼一大塊的鋁片用于導熱和散熱。除了這些基本功能外,為了使用不同的應用場景個需求,保護板還有各種各樣的附加功能(如均衡功能),特別是帶軟件的保護板,功能更是異常豐富,比如藍牙、wifi、GPS、串口、CAN等應有盡有,再高階一點,就成了電池管理系統了(BMS)。智慧動鋰高壓工廠儲能BMS系統,采用高速32位MCU和高性能車規(guī)級AFE,保證高效率和高精度二級或三級架構。特種車輛BMS效果
BMS系統保護板能夠有效延長電池的使用壽命。電動兩輪車BMS效果
電池管理系統(Battery Management System, BMS)是鋰電池組的**控制單元,被譽為電池的“智能大腦”。它通過實時監(jiān)測、保護、均衡與通信功能,確保電池系統的安全、高效和長壽命運行,廣泛應用于新能源汽車、儲能系統、消費電子等領域。BMS通過優(yōu)化電池性能、預防安全事故,直接降低用戶運維成本,并推動新能源產業(yè)可持續(xù)發(fā)展。隨著智能網聯與AI技術的融合,BMS正朝著高集成度、云端協同與預測性維護方向演進,成為能源數字化轉型的關鍵一環(huán)。電動兩輪車BMS效果